Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Neuropathol Appl Neurobiol ; 49(1): e12867, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36536486

RESUMO

AIMS: CYP2C19 transgenic mouse expresses the human CYP2C19 gene in the liver and developing brain, and it exhibits altered neurodevelopment associated with impairments in emotionality and locomotion. Because the validation of new animal models is essential for the understanding of the aetiology and pathophysiology of movement disorders, the objective was to characterise motoric phenotype in CYP2C19 transgenic mice and to investigate its validity as a new animal model of ataxia. METHODS: The rotarod, paw-print and beam-walking tests were utilised to characterise the motoric phenotype. The volumes of 20 brain regions in CYP2C19 transgenic and wild-type mice were quantified by 9.4T gadolinium-enhanced post-mortem structural neuroimaging. Antioxidative enzymatic activity was quantified biochemically. Dopaminergic alterations were characterised by chromatographic quantification of concentrations of dopamine and its metabolites and by subsequent immunohistochemical analyses. The beam-walking test was repeated after the treatment with dopamine receptor antagonists ecopipam and raclopride. RESULTS: CYP2C19 transgenic mice exhibit abnormal, unilateral ataxia-like gait, clasping reflex and 5.6-fold more paw-slips in the beam-walking test; the motoric phenotype was more pronounced in youth. Transgenic mice exhibited a profound reduction of 12% in cerebellar volume and a moderate reduction of 4% in hippocampal volume; both regions exhibited an increased antioxidative enzyme activity. CYP2C19 mice were hyperdopaminergic; however, the motoric impairment was not ameliorated by dopamine receptor antagonists, and there was no alteration in the number of midbrain dopaminergic neurons in CYP2C19 mice. CONCLUSIONS: Humanised CYP2C19 transgenic mice exhibit altered gait and functional motoric impairments; this phenotype is likely caused by an aberrant cerebellar development.


Assuntos
Doenças Cerebelares , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Adolescente , Camundongos Transgênicos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Ataxia/metabolismo , Ataxia/patologia , Cerebelo/patologia , Doenças Cerebelares/patologia , Doenças Neurodegenerativas/patologia , Atrofia/patologia , Modelos Animais de Doenças
2.
Arthritis Rheumatol ; 75(2): 164-170, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35930718

RESUMO

OBJECTIVE: The appearance of anti-citrullinated protein antibodies (ACPAs) in the circulation represents a major risk factor for developing rheumatoid arthritis (RA). Patient-derived ACPAs have been shown to induce pain and bone erosion in mice, suggesting an active role in the pathogenicity of RA. We undertook this study to investigate whether ACPAs can induce tenosynovitis, an early sign of RA, in addition to pain and bone loss and whether these symptoms are dependent on peptidyl arginine deiminase 4 (PAD4). METHODS: Monoclonal ACPAs generated from plasma cells of RA patients were transferred to wild-type and PAD4-deficient mice. Pain-like behavior and macroscopic inflammation were monitored for a period of 4 weeks, followed by the analyses of tenosynovitis in the ankle joints using magnetic resonance imaging (MRI) and bone microarchitecture in the tibia using an X-ray microscope. Microscopic changes in the tendon sheath were analyzed in decalcified ankle joint sections. RESULTS: The combination of 2 monoclonal ACPAs (1325:04C03 and 1325:01B09) induced long-lasting pain-like behavior and trabecular bone loss in mice. Although no synovitis was observed macroscopically, we detected tenosynovitis in the ACPA-injected mice by MRI. Microscopic analyses of the joints revealed a cellular hyperplasia and a consequent enlargement of the tendon sheath in the ACPA-treated group. In PAD4-/- mice, the effects of ACPAs on pain-like behavior, tenosynovitis, and bone loss were significantly reduced. CONCLUSION: Monoclonal ACPAs can induce tenosynovitis in addition to pain and bone loss via mechanisms dependent on PAD4-mediated citrullination.


Assuntos
Artrite Reumatoide , Proteína-Arginina Desiminase do Tipo 4 , Tenossinovite , Animais , Camundongos , Anticorpos Antiproteína Citrulinada , Autoanticorpos , Dor , Tenossinovite/diagnóstico por imagem
3.
Magn Reson Med ; 89(1): 331-342, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36110062

RESUMO

PURPOSE: To assess the ability of MRI-DTI to evaluate growth plate morphology and activity compared with that of histomorphometry and micro-CT in rabbits. METHODS: The hind limbs of female rabbits aged 16, 20, and 24 wk (n = 4 per age group) were studied using a 9.4T MRI scanner with a multi-gradient echo 3D sequence and DTI in 14 directions (b-value = 984 s/mm2 ). After MRI, the right and left hind limb were processed for histological analysis and micro-CT, respectively. The Wilcoxon signed-rank test was used to evaluate the height and volume of the growth plate. Intraclass correlation and Pearson correlation coefficient were used to evaluate the association between DTI metrics and age. RESULTS: The growth plate height and volume were similar for all modalities at each time point and age. Age was correlated with all tractography and DTI metrics in both the femur and tibia. A correlation was also observed between all the metrics at both sites. Tract number and volume declined with age; however, tract length did not show any changes. The fractional anisotropy color map showed lateral diffusion centrally in the growth plate and perpendicular diffusion in the hypertrophic zone, as verified by histology and micro-CT. CONCLUSION: MRI-DTI may be useful for evaluating the growth plates.


Assuntos
Imagem de Tensor de Difusão , Lâmina de Crescimento , Animais , Coelhos , Feminino , Imagem de Tensor de Difusão/métodos , Lâmina de Crescimento/diagnóstico por imagem , Anisotropia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos
4.
Prog Brain Res ; 262: 245-261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33931183

RESUMO

Neurotransmission of acoustic signals from the hair cells to the auditory nerve relies on a tightly controlled communication between pre-synaptic ribbons and post-synaptic glutamatergic terminals. After noise overexposure, de-afferentation occurs as a consequence of excessive glutamate release. What maintains synaptic integrity in the cochlea is poorly understood. The objective of this study is to evaluate the role of GLAST in maintaining synaptic integrity in the cochlea in absence or presence of noise, and its impact on sound-evoked brain activity using manganese-enhanced MRI (MeMRI). The glutamate aspartate transporter GLAST is present in supporting cells near the afferent synapse and its genetic deletion leads to greater synaptic swelling after noise overexposure. At baseline, GLAST knockout (GLAST KO) mice displayed two-fold lower wave 1 amplitude of the auditory brainstem response (ABR) when compared to their wild-type littermates in spite of similar ABR and distortion product otoacoustic emissions (DPOAE) thresholds. While the abundance of ribbons was not affected by the loss of GLAST function, the number of paired synapses was halved in GLAST KO mice, suggestive of a pre-existing auditory synaptopathy. Immediately after the noise exposure ABR thresholds rose by 41-62dB to a similar degree in GLAST WT and KO mice and DPOAE remained unaffected. In the acute phase following noise exposure, GLAST KO mice showed near complete de-afferentation unlike WT mice which maintained four to seven paired synapses per IHC. Brain activity using MeMRI found noise exposure to cause greater activity in the inferior colliculus in GLAST KO but not in WT mice. No changes in brain activity was found in GLAST KO mice at baseline in spite of affected afferent synapses, suggesting that auditory synaptopathy may not be sufficient to alter brain activity in the absence of noise exposure.


Assuntos
Transportador 1 de Aminoácido Excitatório/metabolismo , Perda Auditiva Provocada por Ruído , Sistema X-AG de Transporte de Aminoácidos , Animais , Limiar Auditivo , Encéfalo , Potenciais Evocados Auditivos do Tronco Encefálico , Transportador 1 de Aminoácido Excitatório/genética , Camundongos , Sinapses
5.
Int J Nanomedicine ; 15: 6137-6152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884268

RESUMO

BACKGROUND: Beyond clinical atherosclerosis imaging of vessel stenosis and plaque morphology, early detection of inflamed atherosclerotic lesions by molecular imaging could improve risk assessment and clinical management in high-risk patients. To identify inflamed atherosclerotic lesions by molecular imaging in vivo, we studied the specificity of our radiotracer based on maleylated (Mal) human serum albumin (HSA), which targets key features of unstable atherosclerotic lesions. MATERIALS AND METHODS: Mal-HSA was radiolabeled with a positron-emitting metal ion, zirconium-89 (89Zr4+). The targeting potential of this probe was compared with unspecific 89Zr-HSA and 18F-FDG in an experimental model of atherosclerosis (Apoe-/- mice, n=22), and compared with wild-type (WT) mice (C57BL/6J, n=21) as controls. RESULTS: PET/MRI, gamma counter measurements, and autoradiography showed the accumulation of 89Zr-Mal-HSA in the atherosclerotic lesions of Apoe-/- mice. The maximum standardized uptake values (SUVmax) for 89Zr-Mal-HSA at 16 and 20 weeks were 26% and 20% higher (P<0.05) in Apoe-/- mice than in control WT mice, whereas no difference in SUVmax was observed for 18F-FDG in the same animals. 89Zr-Mal-HSA uptake in the aorta, as evaluated by a gamma counter 48 h postinjection, was 32% higher (P<0.01) for Apoe-/- mice than in WT mice, and the aorta-to-blood ratio was 8-fold higher (P<0.001) for 89Zr-Mal-HSA compared with unspecific 89Zr-HSA. HSA-based probes were mainly distributed to the liver, spleen, kidneys, bone, and lymph nodes. The phosphor imaging autoradiography (PI-ARG) results corroborated the PET and gamma counter measurements, showing higher accumulation of 89Zr-Mal-HSA in the aortas of Apoe-/- mice than in WT mice (9.4±1.4 vs 0.8±0.3%; P<0.001). CONCLUSION: 89Zr radiolabeling of Mal-HSA probes resulted in detectable activity in atherosclerotic lesions in aortas of Apoe-/- mice, as demonstrated by quantitative in vivo PET/MRI. 89Zr-Mal-HSA appears to be a promising diagnostic tool for the early identification of macrophage-rich areas of inflammation in atherosclerosis.


Assuntos
Aterosclerose/diagnóstico por imagem , Maleatos/química , Imagem Molecular/métodos , Radioisótopos , Albumina Sérica Humana/química , Zircônio , Animais , Aorta/diagnóstico por imagem , Aorta/patologia , Aterosclerose/patologia , Autorradiografia , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18 , Humanos , Marcação por Isótopo , Macrófagos/patologia , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Tomografia por Emissão de Pósitrons , Radioisótopos/química , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Zircônio/química , Zircônio/farmacocinética
6.
Otol Neurotol ; 41(4): 545-553, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32176146

RESUMO

HYPOTHESIS: Furosemide alters the permeability of the intrastrial fluid-blood barrier. BACKGROUND: The cochlear sensory cells are protected by the blood-perilymph and intrastrial fluid-blood barriers, which hinder substances, including gadolinium-based contrast agents (GdCAs), to enter the endolymphatic space. High-dose furosemide causes transient shift of hearing thresholds and morphological changes in stria vascularis. Furosemide is also known to enhance drug-induced ototoxicity. METHODS: Furosemide (400 mg/kg b.w.) was injected i.v. in Balb/C mice (n = 20). Twenty minutes later, the GdCA gadobutrol, gadopentetic acid, or gadoteric acid was injected i.v. The distribution of GdCA to the perilymphatic and endolymphatic spaces was studied with MRI (9.4 T) for 250 minutes. RESULTS: The perilymphatic and endolymphatic spaces were signal-enhanced in all animals. Gadopentetic acid and gadoteric acid yielded similar signal enhancement in all three scalae, while gadobutrol yielded significantly higher enhancement in scala tympani than scala media (p = 0.043) and scala vestibuli (p = 0.043). The signal enhancement reached a plateau but did not decrease during the time of observation. CONCLUSION: Treatment with a high dose of furosemide before injection of a GdCA resulted in enhancement of the MRI signal in the endolymphatic space as well as the perilymphatic space, which supports our hypothesis that furosemide alters the permeability of the intrastrial fluid-blood barrier.


Assuntos
Furosemida , Gadolínio , Animais , Cóclea/diagnóstico por imagem , Furosemida/farmacologia , Gadolínio DTPA , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Perilinfa
7.
J Cereb Blood Flow Metab ; 40(11): 2315-2327, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31842668

RESUMO

The penumbra is sustained by an increased extraction of oxygen (OEF) from blood to brain tissue. Metabolic imaging may improve penumbra specificity when examining stroke patients with wake-up stroke and a long time between admission and symptom onset. We used MRI to examine OEF, and compared the volume of regions with elevated OEF to the volume of regions with perfusion deficit in a M2 occlusion model (M2CAO) with preserved collateral blood flow. OEF was calculated from BOLD MRI examining tissue R2', with ASL perfusion imaging employed to determine cerebral blood flows (CBF) and volumes. Diffusion imaging was used to identify the ischemic core (IC). Examinations were performed during and after transient M2CAO in rats. The IC-OEF mismatch was significantly smaller than the IC-CBF mismatch during M2CAO. The penumbra OEF was significantly increased during M2CAO, and decreased significantly after reperfusion. The IC-OEF mismatch may provide increased penumbra specificity compared to IC-CBF mismatch regimens. Results strongly indicate the potential of metabolic MRI for thrombectomy patient selection in cases with a long time from symptom onset to admission. Results demonstrate the effectiveness of reperfusion in alleviating metabolic disturbances in ischemic regions, emphasizing fast treatment to achieve significant neurological recovery in stroke patients.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Imagem de Perfusão/métodos , Algoritmos , Animais , Circulação Cerebrovascular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/etiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Teóricos , Oxigênio/sangue , Consumo de Oxigênio , Ratos
8.
Front Cell Neurosci ; 13: 268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293387

RESUMO

BACKGROUND: Middle ear (intratympanic, IT) administration is a promising therapeutic method as it offers the possibility of achieving high inner ear drug concentrations with low systemic levels, thus minimizing the risk of systemic side effects and drug-drug interactions. Premature elimination through the Eustachian tube may be reduced by stabilizing drug solutions with a hydrogel, but this raises the secondary issue of conductive hearing loss. AIM: This study aimed to investigate the properties of a chitosan-based particulate hydrogel formulation when used as a drug carrier for IT administration in an in vivo model of ototoxicity. MATERIALS AND METHODS: Two particulate chitosan-based IT delivery systems, Thio-25 and Thio-40, were investigated in albino guinea pigs (n = 94). Both contained the hearing protecting drug candidate sodium thiosulfate with different concentrations of chitosan gel particles (25% vs. 40%). The safety of the two systems was explored in vivo. The most promising system was then tested in guinea pigs subjected to a single intravenous injection with the anticancer drug cisplatin (8 mg/kg b.w.), which has ototoxic side effects. Hearing status was evaluated with acoustically evoked frequency-specific auditory brainstem response (ABR) and hair cell counting. Finally, in vivo magnetic resonance imaging was used to study the distribution and elimination of the chitosan-based system from the middle ear cavity in comparison to a hyaluronan-based system. RESULTS: Both chitosan-based IT delivery systems caused ABR threshold elevations (p < 0.05) that remained after 10 days (p < 0.05) without evidence of hair cell loss, although the elevation induced by Thio-25 was significantly lower than for Thio-40 (p < 0.05). Thio-25 significantly reduced cisplatin-induced ABR threshold elevations (p < 0.05) and outer hair cell loss (p < 0.05). IT injection of the chitosan- and hyaluronan-based systems filled up most of the middle ear space. There were no significant differences between the systems in terms of distribution and elimination. CONCLUSION: Particulate chitosan is a promising drug carrier for IT administration. Future studies should assess whether the physical properties of this technique allow for a smaller injection volume that would reduce conductive hearing loss.

9.
Proc Natl Acad Sci U S A ; 115(28): 7380-7385, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941556

RESUMO

The most characteristic feature of domestic animals is their change in behavior associated with selection for tameness. Here we show, using high-resolution brain magnetic resonance imaging in wild and domestic rabbits, that domestication reduced amygdala volume and enlarged medial prefrontal cortex volume, supporting that areas driving fear have lost volume while areas modulating negative affect have gained volume during domestication. In contrast to the localized gray matter alterations, white matter anisotropy was reduced in the corona radiata, corpus callosum, and the subcortical white matter. This suggests a compromised white matter structural integrity in projection and association fibers affecting both afferent and efferent neural flow, consistent with reduced neural processing. We propose that compared with their wild ancestors, domestic rabbits are less fearful and have an attenuated flight response because of these changes in brain architecture.


Assuntos
Comportamento Animal/fisiologia , Domesticação , Medo/fisiologia , Substância Cinzenta , Córtex Pré-Frontal , Substância Branca , Animais , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Coelhos , Substância Branca/anatomia & histologia , Substância Branca/fisiologia
11.
J Innate Immun ; 10(3): 215-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29478057

RESUMO

BACKGROUND: Neuroinflammation triggered by infection or trauma is the cause of central nervous system dysfunction. High-mobility group box 1 protein (HMGB1), released from stressed and dying brain cells, is a potent neuroinflammatory mediator. The proinflammatory functions of HMGB1 are tightly regulated by post-translational redox modifications, and we here investigated detailed neuroinflammatory responses induced by the individual redox isoforms. METHODS: Male Dark Agouti rats received a stereotactic injection of saline, lipopolysaccharide, disulfide HMGB1, or fully reduced HMGB1, and were accessed for blood-brain barrier modifications using magnetic resonance imaging (MRI) and inflammatory responses by immunohistochemistry. RESULTS AND CONCLUSIONS: Significant blood-brain barrier disruption appeared 24 h after injection of lipopolysaccharide, disulfide HMGB1, or fully reduced HMGB1 compared to controls, as assessed in post-gadolinium T1-weighted MRI images and confirmed by increased uptake of FITC-conjugated dextran. Immunohistochemistry revealed that both HMGB1 isoforms also induced a local production of IL-1ß. Additionally, disulfide HMGB1 increased major histocompatibility complex class II expression and apoptosis. Together, the results demonstrate that extracellular, cerebral HMGB1 causes significant blood-brain barrier disruption in a redox-independent manner and activates several components of neuroinflammation. Blocking HMGB1 might potentially improve clinical outcome in conditions such as stroke and traumatic brain injury.


Assuntos
Barreira Hematoencefálica/patologia , Encefalite/metabolismo , Proteína HMGB1/metabolismo , Animais , Apoptose/genética , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Dextranos/metabolismo , Encefalite/induzido quimicamente , Encefalite/patologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Proteína HMGB1/administração & dosagem , Proteína HMGB1/farmacologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Imageamento por Ressonância Magnética , Masculino , Oxirredução , Isoformas de Proteínas , Ratos
12.
Front Neurol ; 8: 358, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790970

RESUMO

In a recent clinical report, return of the tendon stretch reflex was demonstrated after spinal cord surgery in a case of total traumatic brachial plexus avulsion injury. Peripheral nerve grafts had been implanted into the spinal cord to reconnect to the peripheral nerves for motor and sensory function. The dorsal root ganglia (DRG) containing the primary sensory nerve cells had been surgically removed in order for secondary or spinal cord sensory neurons to extend into the periphery and replace the deleted DRG neurons. The present experimental study uses a rat injury model first to corroborate the clinical finding of a re-established spinal reflex arch, and second, to elucidate some of the potential mechanisms underlying these findings by means of morphological, immunohistochemical, and electrophysiological assessments. Our findings indicate that, after spinal cord surgery, the central nervous system sensory system could replace the traumatically detached original peripheral sensory connections through new neurite growth from dendrites.

14.
Otol Neurotol ; 38(7): 1052-1059, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28570419

RESUMO

HYPOTHESIS: Effective paramagnetic contrast agent for the penetration of the perilymphatic spaces of the scala tympani, scala vestibuli, and scala media of the mouse inner ear can be determined using intravenous injection of various gadolinium (Gd) complexes and ultra-high-field magnetic resonance imaging (MRI) at 9.4 Tesla. BACKGROUND: A number of contrast agents have been explored in experimental high-field MRI to determine the most effective Gd complex for ideal signal-to-noise ratio and maximal visualization of the in vivo mammalian inner ear in analyzing the temporal and spatial parameters involved in drug penetration of the blood-perilymph barrier and intrastrial fluid-blood barrier in the mouse model using MRI. METHODS: Gadoteric acid (Dotarem), Gadobutrol (Gadovist), Gadodiamide (Omniscan), Gadopent acid (Magnevist), and Mangafodipir (Teslascan) were administered intravenously using the tail vein of 60 Balb/C mice. High-resolution T1 images of drug penetration were acquired with a horizontal 9.4 T Agilent magnet after intravenously injection. Signal intensity was used as a metric of temporal and spatial parameters of drug delivery and penetration of the perilymphatic and endolymphatic spaces. RESULTS: ANOVA analysis of the area under the curve of intensity enhancement in perilymph revealed a significant difference (p < 0.05) in the scalae uptake using different contrast agents (F (3,25) = 3.54, p = 0.029). The Gadoteric acid complex Dotarem was found to be the most effective Gd compound in terms of rapid, morphological enhancement for analysis of the temporal, and spatial distribution in the perilymphatic space of the inner ear. CONCLUSION: Gadoteric acid (Dotarem) demonstrated efficacy as a contrast agent for enhanced visualization of the perilymphatic spaces of the inner ear labyrinthine in the mouse, including the scala tympani and scala vestibuli of the cochlea, and the semicircular canals of the vestibular apparatus. These findings may inform the clinical application of Gd compounds in patients with inner ear fluid disorders and vertigo.


Assuntos
Meios de Contraste/administração & dosagem , Orelha Interna/diagnóstico por imagem , Perilinfa/diagnóstico por imagem , Animais , Cóclea/diagnóstico por imagem , Cóclea/efeitos dos fármacos , Orelha Interna/efeitos dos fármacos , Gadolínio/administração & dosagem , Gadolínio DTPA/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Meglumina/administração & dosagem , Camundongos , Compostos Organometálicos/administração & dosagem , Perilinfa/efeitos dos fármacos , Razão Sinal-Ruído
16.
Exp Neurol ; 292: 11-20, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28223037

RESUMO

Asymmetric dopamine loss is commonly found in early Parkinson's disease (PD), but its effects on functional networks have been difficult to delineate in PD patients because of variations in age, disease duration and therapy. Here we used unilateral 6-hydroxydopamine-lesioned (6-OHDA) rats and controls and treated them with a single intraperitoneal injection of levodopa (L-DOPA) before performing diffusion weighted MRI and resting state functional MRI (rs-fMRI). In accordance with a neurodegeneration of the nigrostriatal dopaminergic pathway, diffusion tensor imaging showed increased radial diffusivity and decreased fractional anisotropy in the lesioned substantia nigra. Likewise a deterministic connectometry approach showed increase of isotropic diffusion values in the medial forebrain bundle. rs-fMRI showed reduced interhemispheric functional connectivity (FC) between the intact and the 6-OHDA lesioned caudate-putamen. Unexpectedly, there was an increased FC between the 6-OHDA lesioned caudate-putamen and sensorimotor cortices of both hemispheres. L-DOPA reversed the FC changes between the dopamine denervated caudate-putamen and the sensorimotor cortices, but not the reduced interhemispheric FC between caudate-putamina. Similarly, L-DOPA induced c-fos expression in both sensorimotor cortices, but only in the dopamine-depleted caudate-putamen. Taken together, these data suggest that asymmetric degeneration of the nigrostriatal dopamine pathway results in functional asynchrony between the intact and 6-OHDA-lesioned caudate-putamen and increased interhemispheric synchrony between sensorimotor cortices. The results also indicate that the initial effect of L-DOPA is to restore functional corticostriatal connectivity rather than synchronize caudate-putamina.


Assuntos
Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Levodopa/farmacologia , Transtornos Parkinsonianos/fisiopatologia , Substância Negra/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Imagem de Tensor de Difusão/métodos , Modelos Animais de Doenças , Masculino , Feixe Prosencefálico Mediano/efeitos dos fármacos , Feixe Prosencefálico Mediano/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Ratos Sprague-Dawley , Substância Negra/metabolismo
17.
PLoS One ; 12(1): e0169541, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068417

RESUMO

Interventional treatment regimens have increased the demand for accurate understanding of the progression of injury in acute ischemic stroke. However, conventional animal models severely inhibit collateral blood flow and mimic the malignant infarction profile not suitable for treatment. The aim of this study was to provide a clinically relevant profile of the emergence and course of ischemic injury in cases suitable for acute intervention, and was achieved by employing a M2 occlusion model (M2CAO) that more accurately simulates middle cerebral artery (MCA) occlusion in humans. Twenty-five Sprague-Dawley rats were subjected to Short (90 min), Intermediate (180 min) or Extended (600 min) transient M2CAO and examined longitudinally with interleaved diffusion-, T2- and arterial spin labeling perfusion-weighted magnetic resonance imaging before and after reperfusion. We identified a rapid emergence of cytotoxic edema within tissue regions undergoing infarction, progressing in several distinct phases in the form of subsequent moderation and then reversal at 230 min (p < 0.0001). We identified also the early emergence of vasogenic edema, which increased consistently before and after reperfusion (p < 0.0001). The perfusion of the penumbra correlated more strongly to the perfusion of adjacent tissue regions than did the perfusion of regions undergoing infarction (p = 0.0088). This was interpreted as an effect of preserved collateral blood flow during M2CAO. Accordingly, we observed only limited recruitment of penumbra regions to the infarction core. However, a gradual increase in infarction size was still occurring as late as 10 hours after M2CAO. Our results indicate that patients suffering MCA branch occlusion stand to benefit from interventional therapy for an extended time period after the emergence of ischemic injury.


Assuntos
Circulação Cerebrovascular , Circulação Colateral , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos
18.
Cell Transplant ; 26(2): 283-292, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-27725029

RESUMO

Glioblastoma multiforme (GBM) is the most common and most severe form of malignant gliomas. The prognosis is poor with current combinations of pharmaceutical, radiotherapy, and surgical therapy. A continuous search for new treatments has therefore been ongoing for many years. Therapy with tumor-infiltrating lymphocytes (TILs) is a clinically promising strategy to treat various cancers, including GBM. An endovascular intra-arterial injection of TILs as a method of delivery may, instead of intravenous infusion, result in better retention of effector cells within the tumor. Prior to clinical trials of intra-arterial injections with any cells, preclinical safety data with special emphasis on embolic-ischemic events are necessary to obtain. We used native rabbits as a model for intra-arterial injections with routine clinical catheter material and a clinical angiography suite. We selectively infused a total dose of 20 million activated T cells at a cell concentration of 4,000 cells/µl over 8 min of injection time. The rabbits were evaluated for ischemic lesions by 9.4 T magnetic resonance imaging (MRI) (n = 6), and for tracking of injected cells, single-photon emission computed tomography/computed tomography (SPECT/CT) was used (n = 2). In this study, we show that we can selectively infuse activated T cells to a CNS volume of 3.5 cm3 (estimated from the volumetric MRI) without catastrophic embolic-ischemic adverse events. We had one adverse event with a limited basal ganglia infarction, probably due to catheter-induced mechanical occlusion of one of the lateral lenticulostriatal arteries. The cells pass through the native brain without leaving SPECT signals. The cells then, over the first hours, end up in the liver to a large extent and to a lesser degree by the spleen, pancreas, and kidneys. Virtually no uptake could be detected in the lungs. This indicates a difference in biodistribution as opposed to other cell types when infused intravenously.


Assuntos
Encéfalo/metabolismo , Injeções Intra-Arteriais/efeitos adversos , Injeções Intra-Arteriais/métodos , Imageamento por Ressonância Magnética/métodos , Linfócitos T/fisiologia , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Feminino , Glioblastoma/metabolismo , Humanos , Coelhos
20.
Front Neurol ; 7: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014178

RESUMO

BACKGROUND: Hypoxia following traumatic brain injury (TBI) is a severe insult shown to exacerbate the pathophysiology, resulting in worse outcome. The aim of this study was to investigate the effects of a hypoxic insult in a focal TBI model by monitoring brain edema, lesion volume, serum biomarker levels, immune cell infiltration, as well as the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). MATERIALS AND METHODS: Female Sprague-Dawley rats (n = 73, including sham and naive) were used. The rats were intubated and mechanically ventilated. A controlled cortical impact device created a 3-mm deep lesion in the right parietal hemisphere. Post-injury, rats inhaled either normoxic (22% O2) or hypoxic (11% O2) mixtures for 30 min. The rats were sacrificed at 1, 3, 7, 14, and 28 days post-injury. Serum was collected for S100B measurements using ELISA. Ex vivo magnetic resonance imaging (MRI) was performed to determine lesion size and edema volume. Immunofluorescence was employed to analyze neuronal death, changes in cerebral macrophage- and neutrophil infiltration, microglia proliferation, apoptosis, complement activation (C5b9), IgG extravasation, HIF-1α, and VEGF. RESULTS: The hypoxic group had significantly increased blood levels of lactate and decreased pO2 (p < 0.0001). On MRI post-traumatic hypoxia resulted in larger lesion areas (p = 0.0173), and NeuN staining revealed greater neuronal loss (p = 0.0253). HIF-1α and VEGF expression was significantly increased in normoxic but not in hypoxic animals (p < 0.05). A trend was seen for serum levels of S100B to be higher in the hypoxic group at 1 day after trauma (p = 0.0868). No differences were observed between the groups in cytotoxic and vascular edema, IgG extravasation, neutrophils and macrophage aggregation, microglia proliferation, or C5b-9 expression. CONCLUSION: Hypoxia following focal TBI exacerbated the lesion size and neuronal loss. Moreover, there was a tendency to higher levels of S100B in the hypoxic group early after injury, indicating a potential validity as a biomarker of injury severity. In the normoxic group, the expression of HIF-1α and VEGF was found elevated, possibly indicative of neuro-protective responses occurring in this less severely injured group. Further studies are warranted to better define the pathophysiology of post-TBI hypoxia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA